
LAB MANUAL

 ON

CYBER SECURITY ESSENTIALS

(R22A6281)

B.TECH II YEAR – II SEM (R22)

(2023-2024)

DEPARTMENT OF EMERGING TECHNOLOGIES

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

1 | P a g e

 MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

II Year B.Tech CSE(CyS) – II Sem (R22) L/T/P/C

0/-/2/1

Course objectives:

1. To understand various types of cyber-attacks and cyber-crimes

2. To learn threats and risks within context of the cyber security

3. To have an overview of the cyber laws & concepts of cyber forensics

4. To study the defensive techniques against these attacks

5. To understand various cyber security privacy issues

WEEK - 1
 Writing simple Python scripts for tasks like string manipulation, reading from and writing to files, basic network
communication.

WEEK - 2
 Implementing basic encryption and decryption algorithms in Python Caesar cipher, AES, DES

WEEK - 3
 Using python to generate and verify hashes (MD5, SHA-256) for files and messages.

WEEK - 4
 Building a simple Python Client-Server application, understanding sockets.

WEEK - 5
 Writing a python script to capture and analyze network packets(using libraries like Scapy or PySpark

WEEK - 6
 Creating a web scraper in Python to gather data from websites(using BeautifulSoup, Selenium)

WEEK - 7
 Simple penetration testing tasks using Python (Eg: port scanning, vulnerability scanning with tools like Nmap in
Python.

WEEK - 8
 Using python to interact with security-related APIs (eg. VirusTotal, Shodan)

WEEK - 9
 Writing python scripts for basic static malware analysis (file signature analysis, string extraction).

WEEK - 10

 Developing a simple IDS using Python

(R22A6281) – CYBER SECURITY ESSENTIALS LAB

2 | P a g e

Week - 1: writing simple Python scripts that include string manipulation, reading from and writing to files, and

basic network communication.

Objective:
● Perform string manipulation

● Read from and write to a file

● Implement a basic example of network communication

Python Code:
import socket

String Manipulation Function

def reverse_string(s):

return s[::-1]

File Read and Write Function

def read_and_reverse_write(input_file, output_file):

with open(input_file, 'r') as file:

content = file.read()

reversed_content = reverse_string(content)

with open(output_file, 'w') as file:

file.write(reversed_content)

Basic Network Communication Function

def simple_server(port):

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server_socket.bind(('localhost', port))

server_socket.listen(1)

print(f"Server listening on port {port}...")

conn, addr = server_socket.accept()

print(f"Connected by {addr}")

while True:

data = conn.recv(1024)

if not data:

break

conn.sendall(data)

conn.close()

Main Execution

if name == " main ":

String Manipulation

original_string = "Hello, World!"

reversed_str = reverse_string(original_string)

print(f"Original String: {original_string}")

print(f"Reversed String: {reversed_str}")

3 | P a g e

File Read and Write

read_and_reverse_write('input.txt', 'output.txt')

Simple Network Communication (Uncomment to run the server)

Note: Running the server will require a client to connect and send data. #

simple_server(65432)

Instructions for Execution:
1. String Manipulation: This part of the script reverses a given string.

2. File Read and Write:

a. Create a file named input.txt in the same directory as the script with some content.

b. The script will read this file, reverse its content, and write it to output.txt.
3. Basic Network Communication:

a. This is a simple server that echoes received messages.

b. To test this, you will need to write a separate client script or use a network tool to send data to the

server.

c. Uncomment the simple_server(65432) line to run the server.

4 | P a g e

Week - 2: the focus is on implementing basic encryption and decryption algorithms in python.

Objective:
● Implement the Caesar Cipher encryption and decryption

● Implement AES and DES encryption and decryption

Python Code:
from Crypto.Cipher import AES, DES

from Crypto.Random import get_random_bytes

from Crypto.Util.Padding import pad, unpad

import base64

Caesar Cipher

def caesar_cipher_encrypt(text, shift):

result = ""

for i in range(len(text)):

char = text[i]

if char.isupper():

result += chr((ord(char) + shift - 65) % 26 +

65) else:

result += chr((ord(char) + shift - 97) % 26 +

97) return result

def caesar_cipher_decrypt(text, shift):

return caesar_cipher_encrypt(text, -shift)

AES Encryption/Decryption

def aes_encrypt(plain_text, key):

cipher = AES.new(key, AES.MODE_CBC)

ct_bytes = cipher.encrypt(pad(plain_text.encode('utf-8'), AES.block_size))

iv = base64.b64encode(cipher.iv).decode('utf-8')

ct = base64.b64encode(ct_bytes).decode('utf-8')

return iv, ct

def aes_decrypt(iv, ct, key):

iv = base64.b64decode(iv)

ct = base64.b64decode(ct)

cipher = AES.new(key, AES.MODE_CBC, iv)

pt = unpad(cipher.decrypt(ct), AES.block_size)

return pt.decode('utf-8')

DES Encryption/Decryption

def des_encrypt(plain_text, key):

cipher = DES.new(key, DES.MODE_CBC)

ct_bytes = cipher.encrypt(pad(plain_text.encode('utf-8'), DES.block_size))

5 | P a g e

iv = base64.b64encode(cipher.iv).decode('utf-8')

ct = base64.b64encode(ct_bytes).decode('utf-8')

return iv, ct

def des_decrypt(iv, ct, key):

iv = base64.b64decode(iv)

ct = base64.b64decode(ct)

cipher = DES.new(key, DES.MODE_CBC, iv)

pt = unpad(cipher.decrypt(ct), DES.block_size)

return pt.decode('utf-8')

Main Execution

if name == " main

": # Caesar Cipher

Example shift = 4

original_text = "HelloWorld"

encrypted = caesar_cipher_encrypt(original_text, shift)

decrypted = caesar_cipher_decrypt(encrypted, shift)

print(f"Caesar Cipher: {original_text} -> {encrypted} -> {decrypted}")

AES Example

aes_key = get_random_bytes(16) # AES key must be either 16, 24, or 32 bytes long iv,

encrypted = aes_encrypt(original_text, aes_key)

decrypted = aes_decrypt(iv, encrypted, aes_key)

print(f"AES: {original_text} -> {encrypted} ->

{decrypted}")

DES Example

des_key = get_random_bytes(8) # DES key must be 8 bytes long iv,

encrypted = des_encrypt(original_text, des_key)

decrypted = des_decrypt(iv, encrypted, des_key)

print(f"DES: {original_text} -> {encrypted} ->

{decrypted}")

Instructions for Execution:
1. Caesar Cipher: Demonstrates basic shift-based encryption and decryption.

2. AES and DES:

a. These sections use the pycryptodome library for AES and DES encryption.

b. Install the library using “pip install pycryptodome” if not already installed.

c. The script demonstrates encryption and decryption with randomly generated keys.

6 | P a g e

Week - 3: the focus is on using python to generate and verify hashes for files and messages, utilizing hashing

algorithms like MD5 and SHA-256.

Objective:
● Generate MD5 and SHA-256 hashes for strings.

● Verify hashes of strings

Python Code:
import hashlib

Function to generate MD5 hash

def generate_md5_hash(input_string):

md5_hash = hashlib.md5()

md5_hash.update(input_string.encode())

return md5_hash.hexdigest()

Function to generate SHA-256 hash

def generate_sha256_hash(input_string):

sha256_hash = hashlib.sha256()

sha256_hash.update(input_string.encode())

return sha256_hash.hexdigest()

Function to verify a hash

def verify_hash(input_string, known_hash):

Generate hash for the input string

generated_hash = generate_md5_hash(input_string) if len(known_hash) == 32 else

generate_sha256_hash(input_string)

Compare the generated hash with the known hash return

generated_hash == known_hash

Main Execution

if name == " main ":

Example strings

example_string1 = "HelloWorld"

example_string2 = "HelloWorld!"

Generate hashes

md5_hash_example1 = generate_md5_hash(example_string1)

sha256_hash_example1 = generate_sha256_hash(example_string1)

print(f"MD5 Hash of '{example_string1}': {md5_hash_example1}")

print(f"SHA-256 Hash of '{example_string1}':

{sha256_hash_example1}")

7 | P a g e

Verifying hashes

print(f"Verifying MD5 Hash of '{example_string1}': {verify_hash(example_string1, md5_hash_example1)}")

print(f"Verifying SHA-256 Hash of '{example_string1}': {verify_hash(example_string1,

sha256_hash_example1)}")

Verifying incorrect hash

print(f"Verifying SHA-256 Hash of '{example_string2}' with hash of '{example_string1}':

{verify_hash(example_string2, sha256_hash_example1)}")

Instructions for Execution:
1. Generate MD5 and SHA-256 hashes: The script generates hashes for input strings using MD5 and SHA-256

algorithms.

2. Verify hashes: The script checks if a given string matches a known hash, demonstrating hash

verification.

8 | P a g e

Week - 4: the focus is on building a simple python client-server application to understand the basics of socket

programming.

Objective:
● Create a simple TCP Server and Client.

● Understand the basics of socket programming in Python.

Python Codes:

server.py (Server Script)

import socket

def start_server(host='localhost', port=65432):

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.bind((host, port))

s.listen()

print(f"Server listening on {host}:{port}")

conn, addr = s.accept()

with conn:

print(f"Connected by {addr}")

while True:

data = conn.recv(1024)

if not data:

break

conn.sendall(data)

if name == " main ":

start_server()

Client.py (Client Script)

import socket

def start_client(host='localhost', port=65432):

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.connect((host, port))

s.sendall(b'Hello, server')

data = s.recv(1024)

print(f"Received {data.decode()}")

if name == " main ":

start_client()

9 | P a g e

Instructions for Execution:
1. Run the Server Script: Start the server first. It will listen for incoming connections on localhost

(127.0.0.1) and port 65432.

2. Run the Client Script: Once the server is running, run the client script. The client will connect to the server,

send a message, and receive an echo back from the server.

3. Socket Programming: This demonstrates a basic TCP/IP socket connection where the server listens for

connections and the client sends a message.

10 | P a g e

Week - 5: the focus is on writing a python script to capture and analyze network packets.

Objective:
● Capture network packets using Scapy.
● Analyze and print the details of captured packets.

Python Code:

from scapy.all import sniff

Packet processing function

def process_packet(packet):

print(packet.summary())

Add more analysis as needed, e.g., checking for specific protocols, ports, etc.

Start packet sniffing

def start_sniffing():

print("Starting packet sniffing...")

sniff(prn=process_packet, count=10) # Capturing 10 packets for demonstration

if name == " main ":

start_sniffing()

Instructions for Execution:
1. Install Scapy: If not already installed, you can install Scapy using pip install scapy.
2. Run the Script: This script will start capturing packets and process 10 packets for demonstration. Each packet's

summary information will be printed.

3. Customize Packet Analysis: You can extend the process_packet function to perform more detailed

analysis, such as filtering specific types of packets, analyzing packet contents, etc.

11 | P a g e

Week - 6: the focus is on creating a web scraper in python to gather data from websites.

Objective:
● Scrape data from a web page using BeautifulSoap.

● Extract and print specific elements from the web page.

Python Code:
import requests

from bs4 import BeautifulSoup

Function to scrape a web page

def scrape_website(url):

Send an HTTP request to the URL

response = requests.get(url)

Parse the HTML content of the page

soup = BeautifulSoup(response.text, 'html.parser')

Example: Extract and print all paragraph texts

paragraphs = soup.find_all('p')

for para in paragraphs:

print(para.get_text())

Main Execution

if name == " main ":

url = "http://example.com" # Replace with the URL of the website you want to scrape

scrape_website(url)

Instructions for Execution:
1. Install BeautifulSoup and Requests: If not already installed, install them using pip install

beautifulsoup4 requests.

2. Run the Script: The script sends a request to the specified URL, parses the HTML content, and prints the text

of all paragraphs. You can modify the script to scrape different elements as needed.

3. Customize for Different Websites: Change the URL and the elements you want to scrape according to your

requirements.

http://example.com/

12 | P a g e

Week - 7: the focus is on simple penetration testing tasks using python.

Objective:
● Create a simple port scanner using Python.

● Scan a target host to identify open ports.

Python Code:
import socket

Function to scan a single port

def scan_port(ip, port):

try:

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:

s.settimeout(1) # Timeout of 1 second

result = s.connect_ex((ip, port))

if result == 0:

return True

else:

return False

except socket.error:

return False

Main function to scan ports on a host

def port_scanner(target_ip, port_range):

print(f"Starting scan on host: {target_ip}")

for port in range(*port_range):

if scan_port(target_ip, port):

print(f"Port {port} is open")

Main Execution

if name == " main ":

target_ip = "192.168.1.1" # Replace with the target IP address

port_range = (1, 1025) # Scanning the first 1024 ports

port_scanner(target_ip, port_range)

Instructions for Execution:
1. Set Target IP and Port Range: Replace target_ip with the IP address of the target host. Adjust the

port_range as needed (the current range is 1 to 1024).

2. Run the Script: The script will scan the specified port range on the target IP and report open ports.

13 | P a g e

Week - 8: the focus is on using python to interact with security related APIs.(VirusTotal API).

[VirusTotal API : https://www.virustotal.com/gui/home/upload]

Objective:
● Using python to query the VirusTotal API.

● Analyze a URL or File for Potential Security Threats.

Python Code:
import requests

Function to check a URL using the VirusTotal API

def check_url_virustotal(api_key, url):

params = {'apikey': api_key, 'resource': url}

response = requests.post('https://www.virustotal.com/vtapi/v2/url/report', params=params)

return response.json()

Main Execution

if name == " main ":

api_key = "YOUR_VIRUSTOTAL_API_KEY" # Replace with your VirusTotal API key

url_to_check = "http://example.com" # Replace with the URL you want to analyze

result = check_url_virustotal(api_key, url_to_check)

if result.get('positives', 0) > 0:

print(f"URL {url_to_check} detected as potentially malicious.")

print("Details:", result)

else:

print(f"URL {url_to_check} appears to be safe.")

Instructions for Execution:
1. Get a VirusTotal API Key: Sign up on VirusTotal and obtain your API key.

2. Set the API Key and URL: Replace YOUR_VIRUSTOTAL_API_KEY with your own key and

http://example.com with the URL you wish to analyze.

3. Run the Script: The script will send the URL to VirusTotal and print the analysis results.

https://www.virustotal.com/gui/home/upload
http://www.virustotal.com/vtapi/v2/url/report%27
http://example.com/
http://example.com/

14 | P a g e

Week - 9: the focus is on writing python scripts for basic static malware analysis.

Objective:
● Perform basic static analysis on files to identify potential malware.

● Calculate file hashes, extract strings, and analyze file headers.

Python Code:
Before you begin, you might need to install additional libraries, like pefile for PE file analysis and
hashlib for hashing (included in Python Standard Library).

import pefile
import hashlib

import re

import sys

Function to calculate a file's hash

def calculate_hash(filename):

hasher = hashlib.sha256()
with open(filename, 'rb') as file:

buf = file.read()

hasher.update(buf)

return hasher.hexdigest()

Function to extract printable strings from the file

def extract_strings(filename):

with open(filename, 'rb') as file:

content = file.read()

strings = re.findall(b'[\\x20-\\x7E]{4,}', content)

return [s.decode('utf-8') for s in strings]

Function to analyze PE file headers

def analyze_pe_file(filename):

try:
pe = pefile.PE(filename)

return True, pe.dump_info()

except pefile.PEFormatError:

return False, "Not a valid PE file."

Main Execution
if name == " main ":

filename = sys.argv[1] # Replace with the file you want to analyze

15 | P a g e

print(f"Analyzing file: {filename}")

print("\n[+] Calculating file hash...")

file_hash = calculate_hash(filename)

print(f"SHA-256 Hash: {file_hash}")

print("\n[+] Extracting strings...")

strings = extract_strings(filename)

print(f"Extracted strings: {strings[:5]}...") # Print first 5 strings for brevity

print("\n[+] Analyzing PE file...")
is_pe, pe_info = analyze_pe_file(filename)

if is_pe:

print(pe_info)

else:

print(pe_info)

Instructions for Execution:
1. Install pefile: Use pip install pefile if not already installed.

2. Run the Script: Pass the file you want to analyze as a command-line argument. Example: python

script.py sample.exe

3. Analyze the Output:
a. The script calculates the SHA-256 hash of the file.

b. It extracts printable strings that could be of interest.

c. For PE (Portable Executable) files, it analyzes and prints file headers

16 | P a g e

Week - 10: the task is to develop a simple Intrusion Detection System(IDS) using Python.

Objective:
● Create a basic network-based Intrusion Detection System(IDS).

● Monitor and analyze network packets for suspicious patterns.

Python Code:
This script uses the Scapy library for packet capturing and analysis. We'll look for a simple pattern - for

example, detecting a large number of HTTP requests to a specific server, which might indicate a DoS attack.

from scapy.all import sniff

from collections import Counter

import time

Configuration

MONITOR_DURATION = 60 # Time in seconds to monitor the traffic

THRESHOLD_REQUESTS = 100 # Threshold for number of requests to trigger an alert

TARGET_IP = "192.168.1.1" # IP of the target server to monitor

Global counter for requests

request_counter = Counter()

Packet processing function

def process_packet(packet):

if packet.haslayer("IP") and packet.haslayer("TCP"):

ip_src = packet["IP"].src

ip_dst = packet["IP"].dst

tcp_dport = packet["TCP"].dport

Example: Detect multiple requests to a specific server (HTTP port 80)

if ip_dst == TARGET_IP and tcp_dport == 80:

request_counter[ip_src] += 1

Intrusion Detection Function

def detect_intrusion():

print("Starting network monitoring...")

sniff(prn=process_packet,

timeout=MONITOR_DURATION)

Check if any source IP exceeded the threshold

for ip, count in request_counter.items():

if count > THRESHOLD_REQUESTS:

print(f"Potential intrusion detected from {ip}. Total requests: {count}")

if name == " main ":

17 | P a g e

detect_intrusion()

Instructions for Execution:

1. Install Scapy: If not already installed, use pip install scapy.

2. Run the Script: Execute the script to start monitoring network traffic for the specified duration.

3. Review Alerts: The script will report any source IPs that exceed the threshold for requests to the target IP.

